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Error Estimates for the Multidimensional 
Two-Phase Stefan Problem 

By Joseph W. Jerome and Michael E. Rose 

Abstract. In this paper we derive rates of convergence for regularizations of the multidimen- 
sional two-phase Stefan problem and use the regularized problems to define backward-dif- 
ference in time and C0 piecewise-linear in space Galerkin approximations. We find an L2 rate 
of convergence of order X/e in the E-regularization and an L2 rate of convergence of order 
(h2/E + A t/l v) in the Galerkin estimates which leads to the natural choices e - hh4/3, 
At - h4/3, and a resulting 0(h2/3) L2 rate of convergence of the numerical scheme to the 
solution of the differential equation. An essentially 0(h) rate is demonstrated when E = 0 and 
A t - h2 in our Galerkin scheme under a boundedness hypothesis on the Galerkin approxima- 
tions. The latter result is consistent with computational experience. 

1. Introduction. Given a smoothly bounded domain Q C RN, we consider the 
equation, in distribution form, 

(l.li) aH(u) - ?u + f(u) 
0 
O at 

on a space-time domain D = Q X (0, To ] subject to the Neumann boundary condi- 
tion on aQ 

(l.lii) 0au. , v = outward normal, 

and the initial condition 

(l.liii) H(u) It=o H(uo). 

Here H(-) is the discontinuous enthalpy function, f is a Lipschitz continuous real 
function, and the initial function uo is a bounded continuous function satisfying 
uo E Hl(u) n W2"1(Q) with H(uo) E L??(Q). These hypotheses will be maintained 
throughout the paper, although not all the results to follow require the full strength 
of the hypotheses. (1.li) is the transform of the standard equation ([2], [3], [23], 

[31], [40]) 

(1.2) at + s)- V (kv0) + g(O) 0 O, a(O) f |9c(() dt, 

where we set 

(1.3) u = f k(t) dt = K(O) 
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via the Kirchhoff transformation. In (1.2) we assume that k is bounded above zero 
and that c, s, and k are piecewise smooth functions of the temperature 0 discontinu- 
ous at the nominal change of phase temperature 0; these represent the specific heat, 
the latent energy content, and thermal conductivity, respectively. Writing 

(1.4) Q(O) = a(O) + s(O), 
we define H = Q o K-l. We assume that H is a monotone increasing function, Cl in 
(- x, 0) and (0, xo) such that H'(O - ) and H'(O + ) exist, with a jump discontinuity 
of height A at 0 and derivative satisfying 

(1.5i) 0 < X --H'(4) < xi<o, (0. 

The normalization is chosen so that 

(1.5ii) H(O -)=0, 

and the jump condition takes the form 

(1.5iii) H(O+)=A>O. 

Equation (1.li) has been used to model heat transfer in permafrost by J. Wheeler 
([39], [40]) and others. It is applicable when the partially frozen soil is saturated, i.e., 
when liquid water and ice jointly occupy the entire void space of the porous 
medium. Heat transfer due to convection has been ignored and the underlying 
porous medium is assumed to be nondeformable, so that frost heave and subsidence 
are not taken into account. 

Unlike the classical Stefan problem, which concerns the freezing of bulk water, the 
modelling of heat transfer in permafrost must account for the fact that liquid water 
and ice coexist at a bracket of subzero temperatures. In this case, zero degrees 
represents the maximum, though not unique, temperature at which both phases 
coexist in the soil. The constant A represents the product of the heat of fusion B with 
that fraction of moisture content solidified at the nominal freezing point. The 
function s describes the latent energy associated with various moisture content 
percentages as a function of temperature and is here normalized by translation by A 
so that s(O -) = 0. Minor modifications permit the inclusion of the multi-phase 
Stefan problem; what is required is a piecewise smooth function H satisfying a 
condition like (1.5i) between successive jump discontinuities. For simplicity of 
analysis only, we have chosen a perfectly insulated boundary condition and have 
provided a Lipschitz body heating term g in the equation (1.2) which transforms via 
f = g o K-1. 

Let DI = {u < O}, S =u = O}, and D2 =u > O}. Then the system (1.1) is 
formally equivalent to the pointwise form of Eq. (1.1) on DI U D2 adjoined to the 
formally specified conditions 

(1.6i) K-l(u) = 0 on S, 

(1.6ii) -[kA cos(a, lt), v = outward normal of D2, 

sV = the projection of v into the plane of Q, where [kaK-'(u)/81v] represents the 
discontinuity of kaK-1(u)/1av across the free boundary interface S directed from 
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D2 to DI; these assert temperature equilibrium on S and conservation of energy 
across S. For simplicity, we have written (1.6) as though S were a "surface"; it is of 
course possible to generalize (1.6) to the case where S has positive measure. We also 
note that the case A = 0, B #t 0 is physically possible (cf. [2, pp. 94-99]) but less 
interesting since it leads to standard models (cf. sequel) for which kv6 is continuous 
across S. Incidentally, if S is the zero set of a smooth function p, then multiplication 
of (1.6ii) by I V4 I gives the familiar relation connecting the velocity of the front and 
the inner product of Vp with the jump in the vector flux. The relations (1.1) and 
(1.6) lead directly to the weak solution formulation given by (cf. [25]) 

Definition 1.1. Suppose the initial functions uo E H1(Q), H(uo) E L2( Q) are 
specified. Then a function u E L?(0, To; H1(Q)) with H(u) satisfying 

(1.7i) H(u(x)) E [O0 A] if u(x) = 0, 

(1.7ii) H(u) F L2(D) n Hl(O, To; (H(Q))'), 

is said to be a weak solution of the two-phase Stefan problem (1.1), (1.6) if the 
relation 

(1.8) DH(u) at VU V- f(u)t] dx dT 

-f H(u)(x, t) dx + H(uo)T(x,0) = 0 
&2X{T0} QX{O} 

holds for all D E C where D = Q X (0, To) and 

(1.8ii) C = LOO(O, TO; Hl(u)) n H'(O, To; L2(Q2)). 

Remark 1.1. The existence of weak solutions for such equations can be deduced 
from the work of Kamenomostskaja [20] and Friedman [15], although neither author 
considers a term f(Q), Neumann boundary conditions, or the existence of the time 
derivative as an L2 function which is necessary for our work. Minor modifications of 
[17], where a Dirichlet boundary condition is specified, leads to the existence of a 
solution u satisfying ut F L2(D), i.e., u F C. Recent work of Caffarelli and Evans [8] 
and DiBenedetto [12] has demonstrated that essentially bounded weak solutions are 
continuous. We remark that our characterization of weak solutions must be modified 
in our analysis of numerical procedures. This is due to the fact that the estimates to 
follow require a satisfactory substitute for the pointwise equations. This substitute 
requires the introduction of a bounded linear operator T from F = (H'(Q))' to 
H1(Q) which is given by an inverse of -A subject to Neumann boundary data. The 
reader may conveniently think of the equivalent "lifted" relation as an abstract 
integral equation. The mapping T has been used to obtain error estimates for 
Galerkin approximations for linear parabolic equations by Bramble, Schatz, Thomee, 
and Wahlbin [4] and has been used by the second author to analyze finite element 
methods for degenerate parabolic equations arising in fluid flows in a porous 
medium [29]. Finally, for essentially bounded weak solutions, the second integral in 
(1.8i) has the usual meaning. More generally, it has a duality interpretation. 
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Definition 1.2. Given 1 E F = (H'(92))', we define the element w = Tl F H1(Q) as 
the uniquely specified element satisfying the weak form of the linear elliptic 
problem, 

(i) - =I- l(,) onQ,1 

(1.9) (ii) aw = 0 on aQi,. 

(iii) fW = K', 1), 

where ( , ) represents the duality pairing on F X H l(2). Here, -1 is viewed as a 
continuous linear mapping from H'(Q) onto F. 

Remark 1.2. It is easily seen that T is the Riesz map, or, equivalently, that w = Tl 
is the Riesz representer of 1, when the inner product 

(1.10) (v, W)H() JVv * VW + I 
Ij(v)j(w) 

is employed; herej(v) = fu v, and we have 

(1.11) l(,v)=JvTl vv+ I j(Tl(v). 

Note that the norm induced by (1.10) is equivalent to the standard norm on H'(Q) 
(cf. Sobolev [35]). We shall use (1.10) in this paper. The linear mapping T, whose 
restriction to L2(Q) is positive-definite and selfadjoint, induces the following norm 
on F equivalent to that induced by the standard duality norm: 

(1.12) 11111F { l(,Tl)}1/2. 

It is not possible, in general, to identify F with a subspace of H-(l(i), since Ho(Q) is 
not dense in H'(Q). 

PROPOSITION 1.1. Let u be a weak solution of the Stefan problem satisfying 
Definition 1.1 with ut F L2(D). Then TH(u) F H2(D), and the equation 

(1.13) a,( ) + +Tf(u)= fu at I1i2 
holds a.e. in Q for each 0 < t < TO. Moreover, TH(u) jt=0 = TH(uo). 

Proof. For 4 E Co??(D), let D = Tt in (1.8). Using the commutative relation 
((8/8t)T - T8/8t)t = 0 (cf. (1.11)) and the selfadjointness of T, we obtain 

(1.14) fTH(u) at dxdT= [u+ Tf(u)] dxdT- 
I 

j(u)t dx dT, 

which shows that the distributional derivative aTH(u)/at is equal to -u - Tf(u) + 

j(u)/ll 0i . SinceH(u) F L2(D),itfollowsthata2TH(u)/Ix2 e L2(D),i= 1,...,N, 
and the remaining second order partial derivatives are in L2(D) from the properties 
of u. It follows that TH(u) E H2(D). In particular, (1.14) can be integrated by parts 
to obtain (1.13) since 4 is arbitrary and the left-hand side of (1.13) is continuous in t 
as a mapping into L2(Qi). The final statement follows similarly. D 
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Remark 1.3. The first numerical work on the two-phase Stefan problem of which 
we are aware, in which the enthalpy formulation was a basic starting point, was the 
constructive existence analysis of [20], based on an explicit differencing scheme, and 
the paper of Milton Rose [30]. During the 1960's there appeared two papers in the 
Russian literature modelled on [20], viz., Samarskii and Moiseenko [32] and Budak, 
Solev'eva and Uspenskil [7]. The advantage of the enthalpy formulation of course is 
that explicit tracking of the free boundary is unnecessary. Prior to Meyer's work in 
[26], in which an implicit scheme was analyzed in conjunction with smoothing, there 
were earlier papers by Solomon [36] and Lazaridis [24]. A subsequent finite element 
analysis was carried out by Ciavaldini [10]. The present work combines a new 
regularity analysis for solutions of (1.8), estimation of error in the smoothing, and 
the rate of convergence of the continuous Galerkin and fully discrete Galerkin 
schemes. 

Finally, we introduce the smoothing of [ 18]. For ? > 0 we define 

(1.15) (i) WE(() =H (4), < 0, 4>? 
(ii) WE(() =qE(), 0 < ( < 

? 

Here q. is the uniquely determined quadratic polynomial satisfying 
E 

(1.16) qE(0) = H'(0 -), qE(e) = H'(?), |q(4) d = A. 

H. is defined by 

( 1 .17) HE( () |wj(D) D. 

Remark 1.4. It was shown in [18] that, for 0 < E s Eo some eo s 1, HE is a 
continuously differentiable Lipschitz function on R satisfying 

(1.18) 0 < X s HE(4) s y/E, 4 E R. 

Moreover, H. and HE! converge uniformly to H and H', respectively, on compact 
sets excluding 0, and H' and HE! agree off the interval [0, ?]. Let J H-' and 

JE HE . Since |H(() - HE(() I s ?t for ||>?, we have JE(q) -J(q) I s 
(1 + //X)e for G E R. Here J is a Lipschitz continuous function. 

Remark 1.5. At various points in this paper we shall use the inequality 

11 V(t ) < 
IIVIIL-(O,TO;X) 0 S t S To0 

for v E L?(0, To; X). Although such an inequality does not hold in general, we shall 
apply it only when v: [0, To] -* X is continuous or when the supremum holds over 
the entire interval [0, To]. We shall also assume for simplicity that f(0) = 0. 

2. Regularity Theory. We begin by defining a class of regularized problems via the 
enthalpy smoothing (1.17). 

Definition 2.1. Let H. be defined by (1.17) for 0 < - s -O. Then UE is the unique 
solution of the parabolic boundary value problem 

(i) a() _ AuE + f(uE) 0 on Q X (0, To], 

(2.1) (ii) = O on aX2 X(0, TO] a', 
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Remark 2.1. There exists a unique solution ue of (2.1) satisfying 

(2.2) ue E 6D = H'(O, To; L2(Qi)) n L??(O, To; H'(i)) n L2(0, To; H2(Q)). 

The method of lines yields the regularity described by the first two spaces in (2.2), 
where ue is a weak solution of (2.1) (cf. (1.8)). Using (1.13), we see that 

(2.3) aTH,(Ue) + ue + Tf(ue) = j1 uedx a.e.in20O<t<To, 

and the commutation of T and 8/8t reveals that ue is in the third class described by 
(2.2). Note that here we use the fact that 8He(ue)/8t E L2(D). In particular, since 
(2.2) holds, lAue F L2(D), and integration by parts in the weak formulation is valid, 
we conclude that (2.1) holds in the standard way. In fact, we see that (2. li) holds a.e. 
in Q, for all 0 < t < To, by operating on (2.3) with -Li. Under the hypothesis that 
uo E L??(Q), it follows that ue F L??(D), and in this case it is known that ue is 
Holder continuous (cf. Ladyzenskaya, Solonnikov and Ural'ceva [23, pp. 417-423]). 

PROPOSITION 2.1. There exists a constant C such that the relations 

(i) jHe(UE)||Lc(O,TO;L2(&2)) < C, 

(ii) IIUEIIL2(D) + IIVUEIIL-(O,TO;L2( ?)) ? C 

(2.4) (iii) ||~~1 [He(UE)] t||L2 (D) C/ 
(iV) 11He(UE)IIL2(O,TO;HI(Q)) < C/; 

hold for 0 < - < -o. In (2.4i), C depends continuously upon II H(u( 0))II L2(g)- 

Proof. The second and third of these relations are a consequence of the horizontal 
line analysis of t 17]. Thus, (2.4ii) follows from Lemma 3.5 of [17]; we use the fact 
that H,,(4) - X. In a similar way, (2.4iii) follows if we use the bound H,(4) < ?y/ 
and otherwise use the proof of Lemma 3.5. Finally, (2.4i, iv) may be proved as 
follows. Integrate (2. li) against He(ue) to obtain 

I d 
(IHE(u)L2(g) + (Vue, VHe(ue))L2(g) - (HJ(uE), f(ue))L2(g). 

Integration in time yields (2.4i) via the Gronwall inequality and 

2 
|IH'( u E) VUE LIL2(0, T; L2(g2)) < C 

so that 

11VHe( uE) jj22(0To; L2()) 

2 
H'(UE)IjL(O,T0;L0(Q2)) FH,(uE) VUe <L2(O,T;L2(i2)) C/?. 

Remark 2.2. Estimates (2.4ii, iii) follow formally by multiplying (2. 1i) by ut and 
integrating by parts to obtain 

(2.5) (tHe(u E), uE) + I d IVUIIL2(4) + (f(u), u)L2(g) = 0. 

From this, (2.4ii, iii) follow after integration in time and an application of Gronwall's 
inequality. This is purely formal, however, since it is not known that ut F H'(Qi). 
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PROPOSITION 2.2. There is a constant C, independent of e, such that 

(2.6) I[He(u )]tIIL<(OTO;L1(Q)) ? C 

for 0 < e < eo. In particular, aH(u)(., t)/at is a finite regular Baire measure pt on 
i.e., 

(2.7) ( a'() / I i tt 

for all E C(Qi) and almost all t E [0, To] with Ess supt IIt IM(a) < C in the total 
variation norm and is the weak-* limit in this norm of [Hj(ue)]t. 

Proof. The technique used in establishing (2.6) is an auxiliary equation argument 
due to Kruzhkov [22]. If ui is a solution of (2. 1i) with initial function in a fixed ball 
centered at H(u( , 0)) in L2(Q), we have 

(2.8) [HE(ue) - He(a )]t = L A(u 
- 

) [ f(u-) f(a`)]. 

Fixing to, 0 < to < T., we define ? = t, to be the solution of the (backward) linear 
parabolic boundary value problem, 

(i) h(x, t) na = -/Ad in Dto = Q X [0, to)' at 

(2.9) (ii) 0 on aa X [o to), a', 
(iii) ~T*, to) = sgn(uE - )Q(*, to), 

where 

(2.10) h(x, t) ( uz )( E ) 

We note that a bounded solution D of (2.9) exists in the regularity class (2.2) 
satisfying 

(2.11) IItiIL(D0) S 1. 

The solution may be constructed by use of evolution operators as in Kato [21]. In 
this construction, the parabolic problems 

(2.12) h(x, t*) at =- u*' 

where t* is a fixed point in (0, to), generate semigroups whose step-function 
sequences converge to the evolution operators. One can verify the maximum 
principle 

(2.13) R*||L-(D,) ?jlsgn(u- - ij%)(, to)IILo(s,) < 1 

for the solution of (2.12), (2.9ii, iii) and this yields (2.11). We now have, for 
V = u - 

(2.14) [(He(ju) HE(U, O)L2(o0 

fto 
(x,h( t tI 

V)L 
2(g) dt + 

t 
(V. VV) 2(g) 
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where we have used (2.8) and (2.9i). It follows from (2.1 1) and (2.14) that 

(2.15) II (He(Ue) - HE(U))(to )||L(Q) 

<I(He(Ue) - He(ie))(0)I1LI(9) + Cf IU_ - aeL'(9) dt 

We now define, for fixed At > 0, 

(2.16) iue(X t) = Ue(X, t + At), t To-At. 

With this substitution in (2.15) we have, after dividing by At and taking the 
supremum over to E [0, To - At], 

(2.17) J'He(ue)(., t + At) - He(e)(., t) 
At L7(O,T0-At;L'(Q)) 

HE(u )(-, At) -HE(U-)( ,O) 
At L'(9) 

?fTo-At Ue(i, 
s + At) 

- 
U(, ) ds. 

o ~~~~AtL'9 
The second term on the right-hand side of (2.17) presents no difficulty as At -O 0. 
Indeed, it approaches the limit joTo II L'(Q) ds which is clearly bounded above 
independently of - by (2.4ii). The first term on the right-hand side is more delicate. 
This we estimate by the method of lines which is a rigorous substitute for the 
continuity of (2. 1i) at t 0 O. It is clearly enough to show that 

(2.18) 1 |fAtiI[H,(Ue)] 1IL() dt s C. 

Thus, for given At' s At, we consider the horizontal level approximations u' defined 
by, for N = [At/At' + 1], 

He( Un) - Hen(u1) A(u E UE ) = Au1-f(Un) 1 S n ? N, 
(2.19) At' 

U 1 u- 

subject to a homogeneous Neumann boundary condition on K2. The weak form of 
(2.19) is adequate. Standard convergence arguments show that (2.18) follows from 

(2.20) n t n At, s C 
n=1 t L'(9) 

together with the known weak convergence in L2(0, At; L2(Q2)) of the step-function 
sequence of difference quotients to aH4(ue)/at. By employing a semidiscrete version 
of the technique leading to (2.17), we see that, for n = ,. . . , N - 1, with u' = uo 

|HEUn+ I- HE(un ) 

At' L'(Q) 

H|E(uI) - HE( 0) ? C E IIUk? UnIILI(&?) 

At' k+1 | 

At || () E( L'(QU ) k=1 

< He(UO) - H.(-uL) + NC,t + 

At' 
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by a discrete analogue of (2.4ii), so that the verification of (2.20) reduces to the 
inequality 

(2.21) t He(uf)-He(uo) < C. 

Now fix a number 8 > 1, and for g e L'(9) set Sa- g = -S^ (-g), where 

S + g(x) - {g(x), g(x) > 1/8, 
L 1/a, otherwise. 

Fix p> 1 and, for v E LP(Q), v 0, set Ip Lv= v l I /LIKP(Q).Finally,Pfor 
0 # v E H l(i) and 1 <p < 2, set WJ4+K,(v; x) = (Ip o Sa+(v))(x), and note that 

WF`, E H'(Q). Now the following facts are evident: (Note the monotonicity of 
I o Sr.) 

v E L2(Q) =Iq o v sgn v (dominated by a function in L2( i)), q 1,, 

VV VWP+ (V; )> IlPVIP(2= /p + /p =l. 

To verify (2.21), select v = - ue and multiply (2.19), for n -1, by Wp(v; 4 
Integrate over Q, neglect the energy term and let 8 - oo. We obtain, following two 
applications of Holder's inequality, 

,t, [He(UeI) - He(JU ) ] IP 0 V' >|II1AU011LP(S) + Cj|Ufe|jLP(S). 

Here we have assumed for the moment that Avuo C L2(Q). (2.21) now follows by 
multiplying this inequality by I Q I/P, letting p , 1, then cancelling I Q 1-1 to obtain 

[He(Ue) - 
H,(Ue)> ]|| I|UoIILi() + CIU LI( ). 

The right-hand side is bounded by the hypothesis on uo and estimates on ue derived 
in [17]. Note that we have applied the Lebesgue dominated convergence theorem and 
the fact that ue - ue and He(ue) - He(ue) have the same sign. The boundedness of 

the right-hand side of (2.17) independent of - is sufficient to insure (2.6), since 
almost every t is a Lebesgue point (cf. Hille and Phillips [16, p. 88]). 

This completes the proof under the asumption, say, that uo C H2(Q ). A standard 
smoothing argument completes the proof under the hypothesis uo C W21(Q) stated 
in the introduction. 

The final statement follows from the isometric inclusion of LV(Q) in M(Q2) and the 
weak-* compactness of the latter [14] and the standard identification of the limit. 

Remark 2.3. By inequality (3.3), to follow, we see that the proof of the preceding 
proposition yields the estimate 

(2.22) ||Ute11L-(OT;L1(Q)) < C 

for some constant C independent of ?. 

The following result is a strengthening of (2.4i). 
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PROPOSITION 2.3. There is a constant C independent of ? such that 

(2.23i) |jHe(ue)|IL-(0,T0;LOO(Q,, S C, 

(2.23ii) |UejjL-(0,T0;L(Q)) S C/X. 

Proof. We sketch a proof based on the method of horizontal lines where f is 
evaluated explicitly. Thus, we consider the semidiscretization, for Lt\= ToIM, 
n = 0, 1,...,M - 1, 

(i) He(uni) ~He(inn) -A/uE l +f(ue) = 0 in 52, 

(2.24) e 
(ii) n+1 = 0 on ag, 

of recursively defined nonlinear Neumann problems corresponding to the time levels 
t = (n + I)zAt with ue = u0. One requires that (2.24) hold in weak form. By known 
convergence properties of the horizontal line method it is enough to prove 

(2.25) ||HJU ) C, 

where C is independent of n, Avt, and ?. In fact, we shall prove 

(2.26) jjHe(Ue) lL-(2) < C{DAHe(tu) ( + } 

for each n = 1,... ,M, which implies (2.25) if we use the facts that u0 E L?(Q), that 

He(uo) can be estimated in terms of 11 UO 11 L?' and 

(2.27) ||uejjL?(Q) =llJe ? 
He(Ue)jjL-(Q) 

s jjHe(Ui)jjL(Q) 

in (2.26) followed by the discrete Gronwall inequality. Now fixj to be an arbitrary 
integer, and define the truncation operators, required to obtain suitable H1 test 

functions in the weak formulation, by 

(2.28) Ej/i v [sgnv(x)j], 
I 
v(x)I >j, 

for I > 1. For p an arbitrary even integer, 

V = ojp- Hue() Ez H'(Q), 

and this choice of a test function in the weak form of (2.24) yields 

(2.29) fVP + At(p - 1)f I VUeI2H,,(Ue)[He(Ue)]P2 dx 
Q ~~~~~{luelI?j} 

P + I He(U n)-f(un -1))AtI 

where we have used the inequality 

ab S-aP +-bq a p> O b 0 + I 
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with b = v, a = He(u') - f(un_1)zAt. Neglecting the energy term in (2.29), multiply- 
ing through by p, taking pth roots and letting p -s oc, followed by j - oc, gives the 
inequality 

(2.30) 
n 

He( 
u)lL((2) <||HQ(un-I) |L(2) + [f(ue- )||L?(Q)2t 

(2.26) is now immediate from the Lipschitz property of f. We have thus established 
(2.23i). The bound (2.23ii) is now immediate, and by the continuity of ue and He(ue) 
we conclude in fact that the bounds hold for all 0 < t < To.F O 

Remark 2.4. The preceding two propositions enable us to conclude that 

(2.31) |lHe( Ue )I IL- (0, TO; H'(Q)) 1< 

We need only a gradient estimate to verify (2.31). Integrate (2.1i) against He(ue) to 
see that 

(Vue, VHe(ue))L2(g) = -(He(ue)t + f(ue), He(Ue))L2(j) 

< (II [He(Ue)] tIIL?(O,To;L'(Q)) + CIUIeIIL-O(D)) IHE(UE)IIL?o(O,TO;L?o(Q)) 

S C. 

Since He s y/? 5 

(2.32) || VHe( Ue)j L(O,TO;L2(H2)) 6 ? He( U ) 2(S)) 5 ? 5 Vu L(O, TO; L(2) 

and (2.31) follows. O 

3. Uniqueness Estimates and Convergence of the Regularization. We begin by 
establishing an a priori estimate for solutions of (1.8) which implies a uniqueness 
result (cf. also Damlamian [ 1]). 

PROPOSITION 3.1. The solution of (1.8) is unique within the class (. 

Proof. Let u and w be solutions in C of (1.8). Subtracting relation (1.13), satisfied 
by w from the corresponding relation satisfied by u, we have, after multiplication by 
H(u) - H(w) and integration over Q, 

(3.1) 

(- T[H(u) -H(w)], H(u) -H(w)) 2() + (u-w, H(u) -H(W)) L2(g) 

+ (T[ f( u)-f(w)] , H(u) -H(W)) L 2(g) =IQIj(u-w)j(H(u) -H(w)), 

a relation which holds for 0 < t < To. From (1.11) it follows that 

(a T[ H(uu - H(w)], H(u) - H(w) L2() 2 dt 1j1H(u) -) 
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and substitution of this relation into (3.1), followed by integration in time, yields 

(3 .2) 2 |H(u - )H( W |F +J( U- w H(u - )H( W)) L2(E 

+ t( f(u) -f(w), T[H(u) - H(w)])L2() dT 

j|O( fI(u - w)f [H(u) - H(w)]) dT + - 9IH(uO) - H(w0)ojF 

for all 0 < To. By (1.5i) we have the inequality 

(3.3) [ H(a) -H(b)] (a -b) 2, A(a - b)2, a, b E R, 

so that the second term in (3.2) is nonnegative. Direct estimation and the Cauchy- 
Schwarz inequality yield 

(3.4) ( FIl[H( u) -H( w)] 
) 

II~1H(u U- H( W)1II12 

(3.5) (f(u)-f(w),T[H(u)-H(W)1)L2(t?) -IIf(U)-f(W)IIFIIH(u)-H(W)IIF. 

The right-hand side of (3.2) is thus bounded from above by 

(3.6) 1 (?11E2 IItu- Wii2 2(g) + If'IlH(u)-H(w)llj dr + 29IH(uo) - H(wO)F 

for arbitrary q > 0, and the right-hand side of (3.5) is bounded above by 

(3.7) 1 wL2(g) + q11H(u) - H( F 

where we have made use of the continuous injection of L2(Sl) into F and the 
Lipschitz property of f. It is now clear upon use of (3.2)-(3.5) and the bounds (3.6), 
(3.7) that there exists q > 0 such that, for 0 < t < To, 

(3.8i) 2 IIH(u) - H(W)112F+ F f Iu - WIIL2(Q)dT 

< , I-1J t1H(u) - H(w)112FdT + 
I 
IIH(uo) - H(WO)IIF. 

By Gronwall's inequality, 

(3.8ii) IIH(u) - H(W)L2(0,TO;F) +IIU - WjjL2(0,To;L2( )) < CIIH(Uo) - H(wo)11F. 

Thus, TH(uo) = TH(wo) implies H(u) = H(w) and u = w, 0 < t < To. O 
We shall need to make an additional assumption* concerning the initial function 

(3.9) 1 {x E S: 0 < uO(x) ? E} I, Ce, 0 < E ,< o. 

Remark 3.1. Assumption (3.9) is unnecessary if we define the initial data for the 
regularized problem to be 

He(Ue(X, 0)) = H(uO(x)) on Q . 

*Strict inequality at 0 would be preferred. This is possible if H( uo) vanishes a.e. when uo vanishes. 



ERROR ESTIMATES FOR THE STEFAN PROBLEM 389 

However, the choice we made in (2. liii) 

ue(x,O) =uo(x) on Q, 

is more natural. Although it would suffice to assume the right side of (3.9) is only 
O(F,-) for some of our results, (3.9) is not at all restrictive. 

We establish convergence rates for the regularization in the following 

THEOREM 3.2. Let u be the solution of (1.8), and let UE be the solution of the 
regularized problem (2.1). Then there exists a constant C such that the estimates 

(i) IiHE(ue) - H(u)IIL'(O,TO;F) < CJA, 

(ii) |uE - UiiL2(D) S C;, 

hold for 0 <Ce S0. 

Proof. We find it convenient to use the inverse formulation, with 

J = H-1, Jj=H[-1, v = H(u) and vE = H,(uE). 
Using (1.13) for both u and uE, we have, after subtraction, multiplication by vE -v 

and integration over Qi, 

(3.121) 2 |vE V||F + (JE(Ve) Je(V), V 
-V)L2(&) 

Ei(J'(v 

) - 
J(v))j(vE - v) 

+A(J(v) 

- 
J,(v), 

v 
- V) 

- (T[f ? JE.(v) f ? J(V)], V - V)L2(Q). 

The right side of (3.1 1) may be bounded by 

(3.12) Chive - Vi|, + LIIJe(ve) -Je(v)Ii 2(g) + Cdive -ViiL2( 2)IIJe(V) - J(V)IL2(g), 

where we have used the arguments used to derive (3.8). 
The third term in (3.12) is estimated by 

(3.13) Chiv - viiL2(V)IIJ() - J(V)IIL2(g) 

S - ||hve - viL2(g) + (C'/e)hIJl(V) J(V)IL2(Q) 

s Y live - VIIL2(Q) + C E, 

since by the definition of J and JE 

IIJE(V) J(V))ILo(O,TO;L L(Q)) S Ce. 

Using (1.18) and (4.21), respectively, we can absorb into the left-hand side of (3.11) 
the second term in (3.12) and the first term on the right-hand side of (3.13). We get 

(3.14) 2 d ||Ve-VlF + - 
(JE(Ve) - JEWI V -V)L2(Q) S C[e + |V e-V v] . 
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Bound (3.14) remains valid if J,E(v) is replaced by J(v) in the second term on the left. 
Integrate in time and apply Gronwall's inequality to obtain 

(3.15) ||V - V|| L(o,To;F) + JO(Je(V') - J(V), V6 - V)L2(Q) dt 

IIH,(ue) - H( U)IL(O,TO;F) + fo(H,,(ue) - H(u), uC - U)L2(Q)dt 

< C[e +llH,(uo) - H(uo)IIFI 

The inequality (cf. (3.18)) 

(3.16) (H6(ue) - H(u), u - U)L2(g) ?> ?4uL- UllL2(g2) - CE 

allows us to conclude that 

(3.17) IIH(u"e) - H(U)II L(OTO;F) + AXIU - UII|L2(0,To;L2(g)) 

? C[E +IIH,(uo) - H(uo)IIF 

By (3.9), 
2 Hu)I2(~ 

||H,(uo) - H(uo) II F < CIIH,( Uo) - 1 L2(g) 

< Cl(He- H)(Uo)IIL(Q)| {x & Q: 0? u ) | + (Lt |II)2? Cr, 

so that (3.17) yields (3.10). 
To verify (3.16) it suffices to show that 

(3.18) (H,(a) - H(b))(a - b) > X(a -- b)2 - Cr 

for any real a and b. By (l.5i) and (1.18) the inequality is obvious unless both a and 
b are in [0, e]. In the latter case 

I(H,(a) - H(b))(a - b)I < (A + ?) * ? 

which completes the argument. O 
We shall also need regularization estimates for the discrete-time problem intro- 

duced in Section 5. 

THEOREM 3.3. Let M be a positive integer, let Avt = TO/M, and define tn = n I\t 
for n 0 O, 1,... ,M. Let Un denote u(-, tn) and U,fn denote uC(., tn), where u and ue are 
the solutions of (I.1) and (2.1), respectively. Then for some constant 7q 

(3.19) Max IIH,(ue)n - H(U)nJIF + 1 
M 

IuE1 n- 
unfliL2(Q) . Ait < C(At)2 + E 

n-0 

so that un, H(u)n are in L?(1Q) with the bound of (2.23) and 

II/\fl ~2 M 2 
(3.20) MaxH(uE)n - H(u)nilF + q2 || uE n- unhiL2(S2) 

- At < C((At) + E). 
n n=0 
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Proof. In the inverse formulation we have, from (1.13) and (2.3), 

(3.2E1ni) Ve,n) 
En IEn (3.2 21i) T(tesn+l- )+ JE(ve nl) + Tf ? (e(Vnl) 

a T(ven+l _ ven) 1 n 

t (ST -tn ) aTVE ( T ) dT + Q fJe(v -,n) A~t n_at2 

and 

(3.21ii) T(-Vn+1 ) + J(Vn+l) + Tf o J(vn1) 
A\t 

tnj1' 2 j1Vn) 

Subtract (3.21ii) from (3.21i) and integrate the difference against (VE n+1- n+1) to 
obtain 

( ) 1 { IIV,n+l 
_ 

-n+ 11 || F-||E,n - Vnil2F (3.22) 2t{IIv - Fn1I2 Ive - F~I~' 

+ (J(Ve,n+?) - J(vn+l), Ve,n+l _ 
vn+1)L2(g) 

-( f o Je(Ven+) -fo JE(Vn+1) vE,n?l _n?1 )F 

+ (f J(v A ?) f JE(V ) V V ) F 

+ (J(vn?l) - j ) V -V +1)L2() 

- (iftn| ( T - tn )T[T(V(T) - V(iT))] tt dT, VEn? - Vn? 

n ~~~~~~~~~~~~~~~~IL() 

52|a 

JeL(vEn?l) 

- 
J(vn+I)] (V - 

n 

?1n 

) 

= (I) +(II) + (III) + (IV) +(v). 

As in (3.5)-(3.7), we may bound (I) by 

(3.23) 8 1IJe(ven) -JEn+ 
I 

(l )1) 2(g) + Clvn+l - V_n+12 

Term (V) is bounded similarly. We may bound (II) and (III) by 

(3 .24) 1 (II)I + (III)Il < CE + 
E 

IIVen?l - Vn+I 11L 2(g) 

by using a technique similar to that used in estimating (3.13). 
To treat term (IV), notice that by (1.13) and (2.3) 

[T(ve - v)]tt - ([J(ve)]t - [J(v)] t) - T[[f o J,(Ve)] t- [fo J(v)] t] 

+ vt - v 
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so that Propositions 2.1 and 2.2 and the previous equation imply that 

(3.25) II [T(ve - V)lttIIL2(0,TO;L2(Q)) S C, 

|I[T(vE - V)]ttIIL-(O,To;M(Qi)) -IIVt - VtIIL-(O,T0;M(Q)) 
- C. 

Note that the second inequality in (3.25) requires the boundedness of T as a 
mapping from L'(Q) into itself (cf. Brezis and Strauss [6, Lemma 231) and approxi- 
mation of vt. 

To prove (3.19), bound term (IV) by 

(3.26) ,f, |?(- t0)II[T(ve - v)]tIIL2(a) dt IvL enl - Vn?lIIL2() 
n 

- 
*1| [T(vE - V)] ttIIL2(tn,tn+;L2(Q)) IVE - Vn IIL2(&2) 

< C(-| [T(v -v)] ttIL 22(tnot?I;L2(Q))) 

+ El IvEn+nl - vn+1l1L2(Q), 

where the constant y was defined in (1.18); use (4.21) to absorb all terms of the form 

of the last term into the left side of (3.22) and (1.18) to absorb the first term of 

(3.23). Combine (3.22), (3.23), (3.24), and (3.26) to obtain 

(3.27) 2A't {IIv - vil Fliv' - vilE) 

+ I ( (v n?+ ) - .(n?l), V~( Vn + 
I 

) vEn+ v n+)L2() 

[ + |I [T(V V)] ttIi L2( tn,tn ; L2(g?)) + iivEn?l - V 

Notice that we may replace the second term on the left side of (3.27) with 

(JE(V En?) 
- 

J(Vn?l), VE,n?l - vn1 )L2(g)- 

Multiply the modified version of (3.27) by At, sum on n, and use the discrete version 
of Gronwall's lemma [17, Lemma 3.3, p. 251] to obtain 

(3.28) Max jjV'En+1 - vn+1II2 
n 

M-I 

-vq 2 (JE(Ven?) J(Vn?),Vn? ~Vn?)L2(Q).At 

< C[ e + IIH( uO) - H( UO)11F + C (At) [iT(vE - V)] 1I 22(o 2(g)) 

C(?+(At) 
2 

where we have used Proposition 2.1, (1.13), (2.3), and (3.9). Replace Vn + with 

H(un+1) and vEf n+l with HE(UE,n+'), and use (3.16) to get (3.19). 
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We may now conclude that v' z L?(Q). Indeed, for every point t* - mTo/M, 
M > 1, it follows from (3.19) and Proposition 2.3, as well as the continuous injection 
of L2(Q) into F, that 

He(uE(., t*)) H(u(., t*)) (in F), 

H,( uE( , t*) ) H( u( *, t*) ) (weakly in L 2(Q)), 

if ? At = (mTo/jM), j -4 oc, is selected and t* = jAt is fixed. Since 

1I HE(UE(* t*))Il L?(Q) < C by Proposition 2.3, this pointwise bound is inherited by the 
weak L2-limit, H(u(-, t*)), as is seen by an application of Lusin's theorem to the 
contrapositive formulation. 

The proof of (3.20) requires an alternate bound for term (IV): 

(3.29) | tn 
(T - tn)[T(VE - V)]tt((T) dT, VEn1 - Vn 

< Atn1 (T- tn)ll[T(vE - V)]tt(T)IILI(&2)dT IIVEn?1 Vn?1 IIL-(S) 

C(At)lVtE Vt. L o(t-tn+i;M(C2))* 

Using this new bound for (IV), (3.27) becomes 

(3.30) 2Xt {IIv - vn?1II2F-Ive,n - v }F 

+ 4(J(ve,n+?) -JE(Vn+l) Ve,n+l vn+1)L 2(g) 

< c[E + (z0t)IItE - VtIIL-o(t,tn+?;M(Q)) + FiV' - V IF]. 

Modify the second term on the left as before, multiply by At, and sum on n using the 
discrete Gronwall lemma to obtain 

M-1 

M ||E,n+l - pn+1ll +1 
2 

+ j]t,l 
j (Vn+1), tEn+1 nl)2 

n n=O 

(3.31) < Ce + C(At) vt - Vj1L?O(O,T0;M(Q)) + CJHe( uo) - H( uo)11F 

< c(E + At), 

where we have used (2.22) and (3.9). Reverting to the notation of (1.1) and (2.1) and 
using (3.16), we obtain (3.20). D 

4. Error Estimates for a Continuous Time Galerkin Scheme. Let ({h1}h>O be a 
family of triangulations of Q (cf. [9]). For T C Ah we define p(T) (respectively a(T)) 

to be the radius of the smallest ball containing T (respectively largest ball contained in 

T). For convenience we shall assume that 

Q= U T, 
T (=-Ah 
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where the boundary elements may have a curvilinear edge coinciding with au. Let 

Mh,= {X E C?(Q): X IT linear, for all T Ezh}, 

where h = SUPTEAh P(T). We shall assume that (Mh}h>o has the approximation 
property (cf. [37]) 

(4.1) Inf 11 - XIIH(Q) c Ch>-jll'IH2(g) for all D E H2(Q),j = 0, 1. 
xCMh 

We shall sometimes need to assume that the underlying triangulations are quasiuni- 
form, i.e., for all h > 0, 

(4.2) Inf h 2Yo > ?, 

where yo is independent of h. The condition (4.2) is known to imply the following 
inverse hypothesis [9]: there exists a constant C, independent of h, such that 

(4.3) IIXIIH'(Q) <c I IXIL2(U) for all x E Mh. 

We shall restrict ourselves to the use of continuous piecewise-linear elements because 
the regularity theory presented in Section 2 for the solution of (1.8) is not strong 
enough to justify the use of spaces with higher order approximation properties. 
Moreover, the effectiveness of Co piecewise-linear finite element approximation has 
been demonstrated in [39], [40]. 

Let U(J: [0, T] -4 Mh be the solution of the ordinary differential equation 

(4.4i) 
a 
tHJ(UJ) X)2S) + ('VUh, 'VX)L2(g) + (AfUh), X)L2(g) = O, 

for all X E Mh, O < t < To, subject to the initial condition 

(4.4ii) Uh(*, O) = Uh(O), 

where Uh(O) E Mh is the unique solution of 

(4.4iii) PhHE(Uh(?)) = PhH,(uE( * ,O)) = PhH,(uo). 

Here - is a nonnegative parameter to be determined later and Ph is defined to be the 
orthogonal projection of L2(Q) onto Mh. The existence and uniqueness of Uh(O) 

when - is positive is a consequence of the theory of maximal monotone operators [5]; 

Ph o He is a continuous, coercive, monotone operator from Mh into itself. The 
existence of a unique solution of (4.4) for 0 < t < To follows from the fundamental 
theorem of ordinary differential equations, since He and f are Lipschitz continuous 
with the former bounded above zero. 

Remark 4.1. We shall also require in this section unique solutions of (4.4) when 
= 0, i.e., when H. is replaced by H. As in the case of Eq. (1.8), unique solutions 

exist in the class C. Solutions of (4.4iii) follow from the theory of (multivalued) 
maximal monotone operators [5]. In this case, the time derivative of H(Uh) is not 
necessarily a function. Although the initial function (4.4iii) is convenient for our 
analysis, it is more practical to choose 

(4.5) Uh(O) = Ehuo, 

where Eh is the projection of H'(Q) onto Mh defined in (4.9) below. The additional 
analysis needed to treat the second choice of initial data will be given below (cf. 
Remarks 4.5, 4.8-4.1 1). 
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We shall assemble certain facts here which will be used in the derivation of the 
error estimates later in this section. We begin with a counterpart Th of the operator T 
which maps F continuously onto Mh. 

Definition 4.1. Given 1 E F, we define Wh = Thl E Mh as the unique element 
satisfying 

(4.6i) (VWh, VX) =(1, X ) | a(1, 1)| X, all X E Mh 

(4.6ii) fWh dx = (1,1). 

Remark 4.2. Combining (4.6i, ii), we see that wh is the Riesz representer, in the 
inner product (1.10) on Mh, of the restriction of I to Mh. This permits us to write 

(4.7) Th = EhT, 

where 

(4.8) Th: F -Mh, 

and Eh is the H1 projection onto Mh defined by 

(4.9i) (VEhO, VX)L2(g) = (Vp, VX)L2(Q), for all X E Mh, 

(4.9ii) fEhk dx = f dx 

for 4 E H1(Q). It is immediate from (4.7) that wh = Thl is the standard H1 
(Galerkin) approximation to w = Tl, i.e., 

(4.10) Wh = EhW. 

In the case where l = 4 E L2(Q), the approximation property 

(4.11) || (T - Th ) 44IL2(g) = 11 W - Wh I L2(g) < Ch 211 Wl IH2(g) < Ch 211 A||L2(4 ) 

is known to hold (cf. [9], [38]), where we have used the relation 

|| TA||Hf2(U) < CJ|+|L 2(g). 

Finally, it is possible to obtain a relation analogous to (2.3) by comparing (4.4i) and 
(4.6i, ii): 

(4.12) ThHe(Uh) + Uh + Thf(Uh) ji1JUh dx 

a.e. in Q, for each 0 < t < To 
Remark 4.3. The restriction of Th to L2(Q2) is selfadjoint and nonnegative-definite 

and the restriction to Mh is positive-definite. Thus, we may define an inner product 
on Mh denoted by the subscript Fh by 

(4.13i) (A, ()Fh= (Th+, O)L2(a) for allA,4 E Mh, 

from which we obtain the norm 

(4.13ii) IkiIFh a(Th, t)L2(Q) for all D E Mh. 

We may extend 1 Fh to a seminorm on F by defining the associated (semi) inner 
product, 
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In particular, if , 4 E L2(Q), then 

(4.14) (t, )Fh= (Th,, O)L2(a) =(Thy, PhO)L2(a) (ThPh, PhO)L2(a). 

Our final preliminary result compares 11 * Fh and 1 II F on Mh. 

PROPOSITION 4.1. The inequality 

(4.15i) IIXIIFh <IIXIIF forallX E Mh, 
is valid for h > 0. If the quasiuniformity hypothesis (4.2) holds, then there is a constant 
C, independent of h, such that 

(4.15ii) IIXIIF < CIIXIIFh for all X E Mh, 

is valid for h > 0. Thus, the norms are equivalent on Mh with constants independent of 
h in this case. 

Proof. We first establish (4.15i). 

11 1 =( h , )L2Q)= 11 ThXll H1(Q) 

= |EhTX11H1(Q) II<11TXIIH1(Q) = (T,XL2 (Q = IIXIIF, 

where we have used the fact that 11 Eh 11 < 1 as an operator on H'(i). To establish 
(4.15ii) we first note that 

(4.16i) IIXIIL2(Q) h |IXIIFh for all X Mh, 

where C is the same constant appearing in (4.3). By the latter we have 

(4.16ii) |IXIIL2(Q) = SUp{I(XI I)L2(0): 4, E Nh,1,11L 2(a) < 1} 

<- 
Supf 1jXjjFhjjQlH'(Q) + E Mh, 11AIIL2()<1 

? suP(IIXIIFh~~i h 11L2(): 4 e Mh, 1,11L 2(a) < 1) 

which establishes (4.16i). We estimate IIXIIF: 

(4.16iii) ||XII2 (TX, X)L 2(Q) = (Eh TX, X )L 2(Q) + ((I -Eh) TX, X)L 2(Q) 

? IIXIIF< ? II(T- Th)XIIL2(Q)IIXIIL2(Q) 

< IIXIFh + Ch2IIXIIL22(Q) < CIIXIIF 
where we have used (4.1 1) and (4.16i). 0 

THEOREM 4.2. Let u be the solution of (1.8) and Uh the solution of (4.4). Then for 
E = E h4/3, any c0 > 0, we have 

(4.17) IIu - UhIIL2(D) ? C[TO (He(ue) - He(u), ue - u)L2(a) dt 

+ J (He(Hue) - He(Uh), Ue - Uh) L2(a) dt] 

< Ch273 
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for some positive constant C. If we assume the quasiuniformity hypothesis (4.2), then 

(4.18) |IH(u) - PhHe( Uh)IILpo(OT;F) ? Ch2/3, 

where the F norm was defined in (1.12). 

Proof. Subtraction of (4.12) from (2.3) yields 

a 
TTh[He(u ) - He(Uh)] + (Ue - Uh) 

= Th[ f(u -f(Uh)] + (Th - T) [H(U) (+ f(ue)] 

+ l 0 | (U_ - Uh)(X' t) dx. 

Integrate this against H,(ue) - H,(Uh) over Q to obtain 

(4.19) 4 dt |H,(u--) - He(Uh)II1h + (He(ue) - H(Uh), Ue - Uh)L2(Q) 

- (Th[f(uA ) -f(Uh)], He(u - 
He(Uh))L2(1) 

+ (T( - T) [ He u() + f(ue)] , He(ue) - He(Uh) )2() 

+ - Uh) dx (H,(ue) - H,(Uh)) dx 

=()+ (I)+ (III). 

We bound the first term on the right-hand side of (4.19) as follows. 

|(f(ue) -f(Uh), H,(u-) - 
He(Uh))Fhl <If(Ue) -f(Uh)IIFhIhHC(Ue) - HC(Uh)IIFh 

< C||u - UhL2(Q)IIHe(U ) - 
He(Uh)IIFh 

by the Lipschitz continuity of f, (4.15i), and the continuity of the injection of L2(Q) 
into F. Thus, for some C, 

(4.20) 1| 1 | <1? pX(H,(ue) - H,(Uh), ue - Uh)L2(s) ? CL11 IHe(U) - H(Uh)I Fh' 

where we have used (3.3). For q sufficiently small, sayq = X/3, the first term on the 
right-hand side of (4.20) can be absorbed in the second term on the left-hand side of 
(4.19). 

Prior to estimating (II) we note the inequality 

(4.21) (He(W) -He() t 
- 

> (H/y)IIHL( ) - He(4i)IL2(Q) 

for D and 4 in L2(Q), which follows directly from (1.18). We use (4.11) and 
inequality (4.21) to bound (II). 

(4.22) |(II)| ? (T- Th)[ aHJ(Ue) +?(Ue)] IIHe(ue) - He(Uh)IIL2(E) 

11-4[ na, 2 21 2 ? ch ~ ~He(u e) ? CIJueIJL 2(Q)] ? C'qc-JJHe(ue) - He(Uh)IIL 2(Q). 
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Note that for a given E, the choice 'q l/(6C-y), together with (4.21), permits the 
last term to be absorbed in the left side of (4.19). Since Th preserves mean values, the 
Cauchy-Schwarz inequality yields 

|(III) CU - UIL2() IIHe(U') 
- 

He(Uh)FIFh, 

so that, for some constant C, (III) is bounded by 

(4.23) | (III)| < l XA (H,(u' -He(Uh), u - Uh)L 2(Q) 

+1 CJJHe(ue) - He(Uh) II Fh, 

and the choice - X/3 permits the first term on the right-hand side of (4.23) to be 
absorbed on the left-hand side of (4.19). Applying (4.20), (4.22), and (4.23) to (4.19), 
we have 

(4.24) 2 dtIIH (uE) - He(Uh)Fh ? 2 (Hj(ue) -He(Uh), ue- Uh)L2(g) 
2hd21 
< C-[11 aHe(U 

2 
I +|| ||u1L2(g)] + CIIHE(U ') -He(Uh)IlFh 

at L 

Integrating (4.24) in time and using the Gronwall inequality, we obtain 

(4.25) LH(a) - fO; Fh) + (UH,(Ua) - H,(Uh), Ue - Uh)L2(&2) dt 
H -1 t 
ee1 +lU1UL() 

<,h4 [ 2 
22e\ 2 

Notice that the Fh seminorm of H,(ue( , 0)) - H,(Uh(O)) is 0 since the projection of 
this function onto Mh is 0 by (4.4iii). Now, by (2.4iii), we obtain from (4.25) the 
estimate 

(4.26) ||IIHe(ue) - He(Uh)I|Loo(o,TO;Fh) 

+ fT(He(ue) - He(Uh),U U- Uh)L2( 2) dt < C . 

Comparing (4.26) with the estimate (3.1Oii), we have, by (3.3), 

|U - UhII2(D) 
2 

< C TO(E - U, uc - U)L2(g) 
dt 

+ cTO(H,(ue) -He(Uh), U6 - Uh)L2(g)dt 

? 2 ) < Ch4/3, 
E 

if the choice E =0h473 is made for some positive constant -O. This yields (4.17). 
For the remainder of the proof we assume the quasiuniformity hypothesis (4.2) 

and hence the inverse hypothesis (4.3) and inequality (4.15ii). Using the latter 
inequality, we may rewrite (4.26) as 

(4.27) 82 |IPh[He(ue) - H 2(Uh)]j||L??(0,To;F) 

+ 
T 

(He(ue) - H6(Uh), U e- Uh)L2(&) dt ? C -. 
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It remains to estimate (I - PH)(HE(u)-H(Uh)) in the L?(0, To; F) norm. How- 
ever, this term is of order 0(h) (cf. (4.30) to follow) so that (4.18) follows upon 
combining this estimate with (4.27) with the choice E = -oh4/3. 

Remark 4.4. The quasiuniformity hypothesis in Theorem 4.2 and Corollary 4.3 can 
be removed. This follows from the inequality 

(4.28) ||A|2 (Tf, f )L2(a) = (Th f, f )L2(g) + ((T - Th)f, f )L2(g) 

< IIIlIFh + Il (T - Th)fI|L2(a)I||l|L2(Q) 

IfIIIIFh + Ch2IIAI2L2(Q), 
for f E L2(9), applied to f He(ue) - H,(Uh). Proposition 2.3 and estimate (4.32), 
to follow, give L?((0, To); L2(02)) bounds for the latter. 

COROLLARY 4.3. Under the hypotheses of Theorem 4.2, including the quasiuniformity 
hypothesis (4.2), the estimate 

(4.29) |IH(u) - He(Uh)II|L?(O,To;F) < Ch2"3 

holds if the choice e =00h43 is made, EO > 0, for some C > 0. 

Proof. Given (3.10i) and (4.27), it suffices to establish the estimate 

(4.30) |I - Ph)[He(UE) - He(Uh)]IIpLo(O,To;F) ? Ch 

for some C > 0 independent of h. However, a standard duality result gives 

(4.31) I(I - PAh)[ HJ(U) - He(Uh)]IILL(O,To;F) 

s ChJ/HI(UE) - HE(Uh)ILoo(o,To;L2(g)). 

Now, given (2.4i), it suffices to establish the estimate 

(4.32) IlHe(Uh)IIL (O,o;L2(g)) ? A II + LIUh IL-(O0 TO;L2(g)) s C. 

However, (4.32) is derived from (4.4) by setting X= Uh and integrating in time. 
Specifically, with this substitution, the first term of (4.4i) assumes the form 

( aH , Uh) L2(g) =dt Xq(| HE(()td} 

and integration in time yields 

t (aH(Uh)U) d { ( d( } 

2 2U dT U h(t)jjL2Q -Hjj UE(0)jjLdI- f H(OH(~ ) d{ 
0 L2(Q) 

' 2XAlljUh(t)12 I2(I) U()IIL2(g)(A H Q| + dIIUh(0)IIL2(a)). 

If the nonnegative second term of (4.4i) and the third term are estimated in the 
standard fashion, the resultant expression yields, via the Gronwall inequality, 

ilT h12 11U 12 T,lTd,Xl 

(4.33) IVUhIIL2(oTo;L2(U)) +?IUhIIL(o ;L2(a)) 
h 

Cl + C2IV(h)| |L2(i) 
< C, 

since {Uh(O)} is bounded in L2(Q2) via (4.4iii). Inequality (4.32) is now established. 
Estimate (4.30) is now immediate from (4.31). L- 
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By setting X = (Uh)t in (4.4i) we may obtain a uniform bound for Uh in 
L?(0, To; H'(9)) when Uh(O) = Ehuo (cf. Remark 4.9 and (4.46i)). 

Remark 4.5. If the initial function (4.5) is used instead of (4.4iii), then the 
additional term 

(* ) ffH6(u0) _ He(Uh (0)) II Fh 

appears on the right side of (4.26). We can show that (*) is O(h4/e2) if we assume 
that uo E H2(Q2), where uo is the initial function in the Stefan problem (1.1). By 
(1.18), (4.11), and (4.15i), 

IIHe(uo) - He(Uh(0))IIFh < CIIHe(U0) - 
He(EhUO)IL2(g) 

<- j(I - Eh)UoIIL2(g) S C-I jUOIjf2(g) < C-. 

An alternative hypothesis is given by the following analogue of (3.9): for Oh2 
some Eo > 0, 

(**) |{x E 2: 0 < uo(x) Eor 0 < (Ehuo)(x) < E}j =IAehf ? CE 

This implies, for positive e sufficiently small, 

IIH(uo) - He(EhOE ) 2L2(Q) 

JjHjuo) - H 22 2 
2 

|IIHe(u0) - He(EhUO)11L2 (A,h) + IIHe(,0) - He(EhUO)IILL2-Aeh) 

< Ce + ct(I - Eh)uoIIL2(a) < c(? + h <) ? Ch 2. 

We will use the fact that (**) implies 

IIH,(uo) - He( EhU0)t Fh < Ch 
to verify the conclusions of Theorems 4.5 and 4.6 when the initial function is given 
by (4.5). The case Ho = H requires a modified form of (**) at 0 (cf. (3.9)). 

Remark 4.6. Although one must choose E to be proportional to h4/3 to obtain 
0(h2/3) convergence in the proof of Theorem 4.2, under a different choice of E one 
can achieve first-order convergence of the scheme (4.4). Under a very plausible 
assumption on the L?' boundedness of H,(Uh), we shall show that the scheme (4.4) is 
essentially 0(h)-accurate with any E satisfying 0 s E ? eOh2 for some positive 
constant EO. Because aH(u)/at is known only to be a finite regular Baire measure of 
bounded total variation, it will be necessary to estimate (II) in the proof of the 
previous theorem by L'(9) - M(&2) duality. By M(u) we mean the finite regular 
Baire measures, normed with the total variation norm. Although M(Q) is the natural 
dual of C(Qn), the use of the norm-preserving Lebesgue extension [14] permits the 
inequality 

(4.34) Jtui (ds) ?IkiIIL-(Q)24ItjM(ii) for all t E L '(). 

We now cite the required finite element estimates. 
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PROPOSITION 4.4. Let D E L?(Q). Then there is a constant C such that 

(i) II(T-Th)|IIL?(Q)o) ? Ch2'IIILo(Q), dim(Q) = 1, 

(4.35) (ii) II(T TX)IILt() ?< C[ln (I ) 2h211IlL(), dim( i2) > 2. 

In particular, if , E M(Q), then 

(4.36) II (T - Th)1iIIM(2) < CTh2[ln(lh)]2 tlP11MO)l dim(si2) 21 

Proof. The estimate (4.35i) is due to Douglas, Dupont, and Wahlbin [13] whereas 
(4.35ii) in exactly the form as stated is due to Schatz and Wahlbin [33], who cite V. 
Thomee's helpful suggestion. The argument proceeds in stages, the first stage being 
the estimate, for h s 1, 

II(T Th)XIL-(Q) < Cln( f )mih T - XI LN(Q) 

due to R. Scott [34] for the Neumann problem. This is followed by the approxima- 
tion estimate 

mrin IIT - XIIL(Q) S Clh 2-n1plTD11W2,p(Q) (Cl ind. of p > 1), 
XEMh 

which in turn is followed by the Agmon-Douglis-Nirenberg estimate (cf. [1] and [19]) 

11 TII W2,p(, < C2PIIIfILP(Q) (C2 ind. of p). 

Combining these estimates gives 

-(Th)-TXILo(Q) < C2 ln(1/h)(ph-n/P)h2 I Q I'PIIIlIL2(Q), 
and (4.35ii) follows if ph-nlp is minimized as a function of p > 1. A weaker form of 
(4.35ii) was obtained by Rannacher [28]. Variants of (4.35ii) in which IIDIILO(0) is 
replaced by more complicated second-order expressions involving T? have been 
proved by Nitsche [27] and Scott [34]. The estimate (4.36) follows from a simple 
duality argument: 

(4.37) II(T-Th)IIIM(-) =supt((T-Th),M ): 4 E C(S2), II4IC(i) ? 1) 

su SU(((T -Th)+, ,u)| E C(09), ||A0C(Q) --- I 

and (4.36) follows directly from applying (4.34) and (4.35) to (4.37). 0 

THEOREM 4.5. Suppose 0 < E < -Oh2. Let u and Uh be the solutions of (1.8) and 
(4.4), respectively. Assume that the quasiuniformity hypothesis (4.2) holds and that 

(4.38) IIHe(Uh) vL-() < Co for all O < t - 
To 

where CO is independent of E and h. Then we have the estimates, for h s 1, 

(439) IIH(U) - He(Uh)II (OhTO;F),<ch 
, dim(Q) 1, 

- "''hIIL(O,o;F 1h[ln(I/h)], dim(O2) 2, 

and 

(4.40) IIU - UhlIL2(D) < Ch / dim(u) 
= 

1, 
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Proof. By (4.19), (4.20), (4.22), and (4.23) we obtain 

2j dtI|HXN) - He( Uh)1IIFh + 2 (He(ue) -H6(Uh), u - Uh)L2(Q) 

< ( - (T-Th)atHe( u), He(U) -He(Uh)) L2 h 

+CIIHe(ue) -He( Uh)IIFh ? C||(T- Th)f(Ue)lII2(0) 

S (T- Th) aWHe(Ue) - 1JHH(u) 
-H(Uh)JJ2p(g 

) 

?CJIHe(UE) -HUh )| 2Fh ? Cu2. 

Integrating in time and using Gronwall's inequality, we obtain 

(4.41) JjH6(ue) - H6(Uh)JJL??(O,TO;Fh) + 1 (HC(UI) HT(Uh)f u- Uh)L2() dt 

< ([lTh -T) 
atjH6(uc) IL(O,T0;M(u)) 1H6(ue) He(Uh)l1L'(o,To;Lo(u)) + ]. 

Using Proposition 2.3 and the assumption (4.38), we conclude that 

(4.42) 1H6(uE) - He(Uh)T IL1(- TO;LH()) ? C. 

Using (4.41) in combination with (4.l5ii), (4.36), (4.42), and (2.6) yields 

(4.43) t3211Ph[He( Ue) HC(Uh)]II L(O To;F)+JI (He(UE) -He(Uh), u6 Uh)L2(2) dt 

{ Ch2 dim(S2) =1, 

CI 2[Hn(/Uh)12, dim(c ) 2 2. 

Applying (1.18), (3.10), and (4.32) to (4.43), we obtain 

(4.44) IH(u) - He(Uh)lILOO(O,TO;F) + 2fu -UhId2(D) 

l + h2[Tn(/h)12, dim(U2) > 2. 

This yields (4.39) and (4.40). H LI 
Remark 4.7. Theorem 4.5 indicates that one may set e - 0 in (4.4) and still obtain 

essentially first-order convergence. This raises the question of why we introduced the 
e-regularization. It turns out that when one introduces the backward-difference time 
discretization of (4.4), the resulting nonlinear algebraic problem is easier to solve by 
standard methods with e an h4d 3 than e 0. Also, the restriction on the size of the 
time step is less severe. 

Remark 4.8. If we assume (**) as in Remark 4.5, then Theorem 4.5 is valid for the 
initial function (4.5). An obvious modification is required when e d0. 

In some media it is possible that the unfrozen moisture content is a continuously 
differentiable function of temperature even at 0?C. In this case the enthalpy 
function is a continuously differentiable function which satisfies (1.18) for some 
positive parameter e; we denote this enthalpy as H6(D), where the e is now of 
physical significance. 
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If C is sufficiently large with respect to the mesh spacing h, then estimate (4.26) 
becomes significant with uV representing the physical transformed temperature 
variable. The same comment applies to the fully discrete estimate (5.14). 

Remark 4.9. By (2.4ii), (3.1Oi), and (3.16), 

Xu8 - UIL2(7) L (H(Ue) -H(u), uL- U)L2(a) + CC 

< IIH(ue) - H(U)IILOO(O,T;F) * lu UIIL??(0,T;H'(Q)) + CC 

C;C + CC S C;C, 

so that 

(4.45) Iu e - UIILOO(O,To;L2(g)) < CE1/4. 
When Uh(O) = Ehuo and (**) holds, 

XIIu - UhIIL2(O To;L2(g)) < 2(H,(u") - He(Uh), uC - Uh) + C;C 

? 
2||HJ(u) 

- 
HC(Uh)IILOO(0,To;F)hIJU 

- 
UhhILo-(0,To;HI(Q)) + C;C 

< c(L? )=Ch/ 

with C C0h4/3 where we have used (1.18), (2.4ii), (2.23ii), (4.26), (4.45), and the 
bound 

(4.46i) I|UhII LO(0,To; H'(9)) C 

which is easily obtained from (4.33) and the subsequent comment. Thus, with 
- Eh 4/3 

(4.46ii) IIU - UhIILo(o,To;L2(Q)) < Ch1/3. 

Under the hypotheses Uh(O) = Ehuo and (**), as well as (4.38), 

XIIu - Uh112 L 
(OTo;L2(g)) 

< 2IIHe(u ) He(Uh)IILO(0,TO;F)hIIU - UhhILo(0,To;H1(Q)) + C;C 

< Ch[ln(l/h)]d/2 + C C 

where we have used (1.18), (2.4ii), (2.23ii), (3.10i), (4.39), and (4.46i) under the 
relation C s Coh2. Thus, 

(4.47) IIU UhIIL?(O,T;L2(Q?)) 
? C[ln(l/h)] /4 h 

with d = 0 when dim(g) = 1 and d = 2 when dim(Q) > 2. 
It is interesting to note that under the regularity hypothesis 

(4.48) II[He(u )LtIlL2(D) S C, 0 C ? EO, 

one can prove first-order convergence by modifying the proof of Theorem 4.2. 

THEOREM 4.6. Let u be the solution of (1.8), let Uh be the solution of (4.4), and 
suppose (4.48) is valid. Then for 0 s C S Coh2, any CO > 0, 

(4.49) LJU - UhLIL2(D) < Ch. 
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Under the quasiuniformity assumption (4.2), 

(4.50) |IH(u) - He(Uh) jL-(0,T;F) < Ch. 

Proof. We shall need a new bound for term (II) in (4.19). We cite the finite 
element estimate [9], [38] 

(4.51) || (T - TO) IHI(2) < Ch 11TAjj H2(a) < ChIIAIL 2(a) 

for all G C L2(Qi) and replace (4.22) with the new estimate 

(4.52) | (II) (T Th [ H(ue) + f(Ue )] || IIHe( - He(Uh)UJIF 

aCh , Ch -Hj(ue) + f(ue) (IIHeue) -He( Uh)IIFh + Ch) at L 2(a2)h 

? 2fl 1k +| at LC( H1 ) ? CIIHe(u) _ He(Uh)11F2, 

where we have used (4.28), (4.51), and the Cauchy-Schwarz inequality. Bound (4.52) 
enables us to replace (4.26) with 

(4.53) |IIHe(ue) - He( Uh )112|o(o,To; 

+ TO(H,(ue) - H(Uh) Ue - Uh) 2(a) dt <Ch 2. 

Combine (3.10), (4.15) and (4.53) to verify (4.49) and (4.50). O 
Remark 4.10. If Uh(O) = Ehuo as in (4.5) and (**) is valid, Theorem 4.6 still holds. 

The theorem also holds without the quasiuniformity hypothesis if (4.28) is utilized 
(cf. Remark 4.4). Theorem 4.5, however, does require the quasiuniformity hypothe- 
sis. Note that a modified version of (**) is necessary in the case Ho = H. 

Remark 4.11. Suppose Uh(O) Ehu, (**) is valid, and the hypotheses of Theorem 
4.6 hold. Then 

(4.54) AIIu - Uh I2 L(0To;L2(a)) 

< 211He(ue) - He(Uh)IIL-o(0,To;F)IIUe - UhIIL-o(0,To;H'(Q)) + C;c 

< c(h + )< Ch, 

where we have used (1.18), (2.4ii), (2.23ii), (4.45), and (4.50) as well as (3.1Oi). 

5. Error Estimates for a Discrete-Time Galerkin Scheme. In this section we shall 
analyze the backward-difference analogue of (4.4). 

Definition 5.1. Let M be a positive integer, let At = To/M and t, = nA\t for 
n = 0,... , M, set gfn = g(tn), and define 

W +g) n = (gn+1 - gn)/At, n = O, ...,M- 1, 

for any function g on {t tn}. The discrete-time Galerkin approximation of u( , tn) is 
defined to be Uhn, where { Uhn }m = C Mh is recursively generated from the nonlinear 
algebraic relations 

(5.1i) (a (He(Uh))n, X)L2(Q) + (VUh1, VX)L2(,) ? ( l(u '), X)L2(Q) = 0, 

for all X C Mh, n = 0, 1,... ,M-1 , 
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(5.1ii) PhHe(Uho) PhHe(Ue( *,O)) = PhHe(UO). 

The parameter - will be determined later. For convenience in formulation, the reader 

should understand [H,(Uh)]' in (5. 1i) to mean H,(Uhn). 
Remark 5.1. The existence and uniqueness of Uho in (5. lii) follows from the theory 

of maximal monotone operators. For E > 0, the existence of unique solutions of 

(5.li) can be demonstrated by pseudomonotone operator theory [25]. Under assump- 

tion (**) of Remark 4.5, all of our results are valid if we choose the initial function 

Uho = Ehu0 instead of (5. lii); with a modification for (**) for Ho = H. 

Remark 5.2. The operator Th induces a pointwise relation on Q satisfied by the 

solution of (5. li). Comparing the latter with (4.6), we obtain 

(5.2) [ah(ThHe(Uh))] u =Thf(U4?) + 1fU4?1.Uh 

THEOREM 5.1. Let u be the solution of (1.8), and let {Uhn} }' be the solution sequence 
of (5.1). For - = h4/3 and At < ch4/3, E and c positive constants, 

M 1 /2 

(5.3) [ IIu(tn) - UhnII22(0),At < Ch2/3 
n=O 

If the quasiuniformity hypothesis (4.2) holds and IIHe(Uh )|IL2(o) < C, then 

(5.4) Max ||H( U)n - He(AU) |F <Ch2/3 n 
with these choices of E and At. 

Proof. Noting by (2.3) that 

[a E (THe(u_))] at THE( e)(tn+l) nt| T- tn)[THe(U)] tt(T) dT 

W 
I 

(ue)n+l -(Tf(Ue))n?1 + I 
n + 

tn 
tn4{u + Tf(u )}t(T) - fuE(T) dx] 

dT 

and combining this relation with (5.2), we obtain 

(5.5) [a~ (Th(He(U_) - He(Uh)))]n + (U_ - U 

= Th[f(Ue) -f(Uh)] n+ + f(ue - Uh) + we,, 

+ (Th- T)[(a+ (He(ue)))n + f(ue)n ], 

where 

W(E, n) tn+1 (T - t WT)[u (T) + aT(u) (T)I-j21 u-(T) dx] dT. 
At n[ at t2 
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Integrate (5.5) against [He(ue) - He(Uh)]+ 1 and use the Cauchy-Schwarz inequality 
to obtain 

(5.6) 2Azt { He(Ue)? - He(Uh F- - He(Uhf)IF} 

+(He(U)n? -He(Uhn 1), ( Ue)n - Uhn 
)L2(2) 

- (Th [f(U ) -f(Uh)] , He(Ue) - He(Uhfl 1))L2(2) 

+ ((Th - T)[(a+He(ue))n +f(ue)n ], He(Ue)n - He(Uhnl))L2(o) 

+ (U_- Uh) f| [He(U_) -He(Uh)] 

+ (we, H(Ue)n+l - H (Ul1))L 2() 

=(I)n+1l + (I)n+ l + (II)n+ l + ('V)n+l- 

We shall first estimate the term (IV)n+ I . We have 

(5.7) (IV) +1 
1 2 | 2( + 

I 
He(U)n?l 22(o), OV) n+ I 1 W 

2(llLe) I 2' 

and the choice -j l/(4y), coupled with (4.21), permits the second term on the 
right-hand side of (5.7) to be absorbed on the left-hand side of (5.6). In estimating 
the first term on the right-hand side of (5.7), we shall interchange T and a/at and 
use the inequality 

af(ue') ? 
() at 2()| < CLlut'IIL 

where C is a Lipschitz constant for f, to obtain 

(5.8) || We,nhIL2(s2) < CAt IlUtL2(ttn,t,+I;L2(02)) 

for some constant C. Here we have also used the triangle inequality and the 
Cauchy-Schwarz inequality. We now bound (')n+1i ("I)n+1i ("'I)n+1 in a manner 
virtually identical to the corresponding quantities (I), (II), and (III) in the proof of 
Theorem 4.2, replacing 1/3 with 1/4 and 1/6 with 1/8. This yields 

(5.9) 2 jz j { He(Ue) - He(Uh )F hh hHe(Ue) 2 

2 (H(ue)n _- He(Uhn?), (Ue - Uh) )L2(2) 

( t 2 + H( h)n+ - HU ) ) 

+ 
At 

||U 2|2(t" n+;2(02)) + ||He(U 
)n+ - He(U n+)112 

In order to put this in a form suitable for an application of the discrete Gronwall 
inequality, we estimate the first term on the right-hand side of (5.9). This yields 

(5.10) 11[a?+H(Ue)]n L2(i2) 
ftn?I 

[He(u)]t(T) dT' 
A n L 2(o) 

1 rtn? i C 
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Combining (5.9) and (5.10), multiplying through by At, and summing on n from 
n 0 O to n m - 1, 0 < m ? M, gives 

(5.11) 2 {IIHE(UE)m - He(Uhr)|IFh -|HE(Ue) -He(Uh )IFh 

rn-I 
+ 2z (He(ue) - He(Uhfl?),(U-) - Uh 

)L2(g)At 

< C{-( [He(l )1tIIL2(D) + c) + () UtIlL2(D) 

m-I 
.)n I n+)IA 

+ rn-I |He( ue)fll - HE(Uhn?l) F At}h 
n=O 

Applying the discrete Gronwall inequality to (5.1 1) yields, for some q > 0, 

M 

(5.12) Max 
|IH"(Ue)n 

- He(Uh)lFh + q , (H(u)n _ HE(Uh ), (U) n) At 

h ? (II[E(U )]tII2(HjU+ C) + (A) IIUll2(D}. 

Using (2.4ii, iii), we see that the right-hand side of (5.12) is bounded above by 
C(h4/E2 + (At)2/e). Comparing this bound with that given in Theorem 3.3, esti- 
mate (3.19), i.e., with the identification (u,)n u Um' 

2 M2 
(5.13) Max [H() - H(u)] |lF + E II(Ue)n - uflnL2(l)At 

< (?+((At )2/?)), ?< C( + 

we see that setting ? h h4/3 and choosing At < ch4/3 for some positive constants 

,o and c yields (5.3). 
To verify (5.4) we assume the quasiuniformity hypothesis (4.2); by (4.15ii) we may 

rewrite (5.12) as 

(5.14) 32 Max IIPh[Hu)n h - F 

M 
(H(uE)n -HE(Un ),(U) - At ? C( 2 + (At)2 

n=O 
He(U hLE 

Comparing (5.13) and (5.14), we see that it remains to prove 

(5.15) Max II( I- Ph)[He(Ue )n - H Un)] |F < Ch. 

By an inequality similar to (4.31), it suffices to know that, for n 0 O,... ,M, 

(i) IIH(U)fL???C (5.16) (ii) IIHe( U)L2(2) < C. 

(ii) 1He n) )11 2(a) < C. 

However, (5.16i) follows from 

IIH8(u )IIr2(Q) ?jjH (UI)||L(OT;L2(Q)) I C, 
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where the latter inequality makes use of (2.4i) sharpened by the continuity of H8(us). 
(5.16ii) is the finite element analogue of (2.4i) and the fully discrete analogue of 
(4.32); its validity is an assumption of Theorem 5.1. This establishes (5.15) and hence 
(5.4). 0 

Remark 5.3. The quasiuniformity hypothesis in Theorem 5.1 is unnecessary if use 
is made of (4.28) with f= [H6(ue) - HE(Uh)]. The constraint At s c- h4/3 in 
Theorem 5.1 is a bit surprising; one might expect the usual constraint At s c- h2 to 
be necessary to maintain the global convergence rate. We get the latter in our next 
result, because the analysis of (5.1) with ? 0 requires a cruder estimate of term 
(IV)n + I 

THEOREM 5.2. Suppose that the quasiuniformity assumption (4.2) holds. Assume that 
the solution of (5. 1) satisfies 

(5.17) Max IIH(U)o() s C (Cind. of , h) 

for0 < e ? eoh2. Then, with At <c - h2, and h < 1, 

(5.18) Max ) -HUh )IF?{ C(ln(l/h))h, dim(g) 2, 

and 

(5.19) - u~~~2 1V2 {Ch, dirn(Q) 1, (5.9) (I "Uh l2(/) lC(In(l/h))h, dim(t2) > 2. 

Proof. Returning to inequality (5.6), we bound the terms (I)n + and (III)n + as 
previously. We also bound the term in (II)n+ involving (Th - T)f(U,)n+l as in 
(4.52). A different duality estimate is required for the remaining term. We have 

10 + 1 1 = |(( Th -T)(a+HE(uE)), HE(u) - n+ )) 2() 

1)tOJ uEu))II(H.Hu~ H( Uh1 /lL'~2 
|( -T)(a+ 2eu) |()||He(U_)n - H( n+ I)11??Q 

< C||(Th- T)(a+ -) 

where we have used (2.23i), (4.34), and (5.17). Thus, 

|(II') n + I l < ftI ?+ I( - T) 
a 

H(ue)T) dTr 

where the interchange of (T. - T) and a/at may be justified by using (1. 10)-(1 .11), 
(4.6)-(4.7), 

c Clhf't+ (Th - T) a H(ue)(T)M) dT 

S ClE ( T, - T ) at He((u ) L'(t tn+1;M(Q)) 

and the latter quantity may be estimated as in estimating (4.41). Thus, term (11)n+I 
is 0(h2) in the one-dimensional case and O([ln(l/h)]2h2) when dim(&2) is > 2. 
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Next, we must treat term (IV), ,. We have 

(IV)nlll A t| (T - tn)[ + Tf(u )(U ) - I u(T) dx dT 

X JHe(U 
)n?l - He(.Uh ) n 

L?(Q) 

C 
ftn?||((T-f)II()I) dTi, 

where we have used (2.23i), (5.17) and 

af(ue') a u 

at L'(Q) 
C at L(Q) 

This gives 

(5 .20) | (IV) n +I < C/\t|| Ut || L?(tn tn+1I L'(Q)) . 

Combining these reestimations with (5.6) and the previous bounds gives 

(5.21) 2At {JHE(Ue) - HE(Uhfl?1 F -|He(Ue) - HE(UhHu)hF} 

+ (e() - He(Uh ),(ue) - Uh)L2(Q) 

< C{ JJH ( U)+ - H(Uh +l') Fh 

+ [ln(1/h)] dh2| [He( Ue)] tll L-(tn,tn+ I; MQ)) 

+At||UtUIL?O(tn,tn+i;L('Q))} + Ch2, 

where d 0 O or 2 according as dim(Q) = 1 or dim(Q) > 2. Multiply (5.21) by At, 
sum on n, and use the discrete Gronwall lemma to obtain 

(5.22) Max IIHe(U - He(U )||Fh 

M 

+81 z He(Ue)- He(h ) U)- Uh )L2(Q) A\t 
n=O 

s C[ln(l/h) h 11 Lo"Ue) tl(0 TO; M(C2)) 
+C c At iU11 UtllL(O,To;LI(Q)) + Ch2 

? C{ [ln(l/h)]dh2 + At 

where we have used (2.6) and (2.22). Comparison of (5.22) and estimate (3.20) of 
Theorem 3.3 yields (5.19). Use (3.20), (4.15ii), (5.15) and (5.22) to obtain (5.18). O 

Remark 5.4. It is not possible to remove the quasiuniformity hypothesis in 
Theorem 5.2. However, the technique discussed in Remark 5.3 is valid in Theorem 
5.3 to follow. The argument used to derive (4.46) may be used to show that, under 
the hypotheses of Theorem 5.1, with Uho = Ehuo substituted and (**) of Remark 4.5 
assumed, and with a modification in (**) in the case Ho = H, 

(5.23) Max IU - Uh4IL2(2) 
< Ch/-3. 

n 
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Under the hypotheses of Theorem 5.2, the argument used to derive (4.47) may be 
used to obtain 

(5.24) Max u1 - Un IL2(o) < C[ln(l/h)] /4 h, 
n 

where d = 0 if dim(Q) = 1 and d = 2 if dim(Q) > 2. 
It is interesting to see how our convergence estimates can be strengthened if we 

make some assumptions concerning the regularity of the solution of the Stefan 
problem (2.1). 

THEOREM 5.3. Suppose (4.48) and the hypotheses of Theorem 5.1 hold. Then, for 
E = E-h2 and At < ch2, Eo and c positive constants, 

M 2I/2 
(5.25) [nilu(tn) - Uh IL2(o) /Att 1< Ch. 

Under the quasiuniformity assumption (4.2), we also have 

(5.26) Max |H( u)n -He(Un)F < Ch. 

If the regularity hypothesis 

(5.27) IVuIL2(D) < C, 0 < E < to, 

is valid, then we need only assume that 0 < E < - h2 and At < ch to obtain (5.25) and 
(5.26) provided, for the latter, (3.10i) holds uniformly in t. 

Proof. We need a new bound for term (II)n+I in (5.6). By (5.16) and (4.28), 

(5.28) I(II)n+1I-<j(Th - T)[(a+He(Ue))n +f(ue)n ?] H(2) 

IIHE(ue)n+l - HA(Uhn+l1) F 

?{lI(Th - T)[(a+ H(ue))n +f(ue)n+1]jj2 
'?2 

?+ 2I|He(ue)n - He( Uh1 ) |h F + Ch 

Use (2.4i) and the finite element estimate [9], [38] 

(5 .29) 1 (T T-Th )(PII1 H(Q) -< Ch || T(P|| H2(o) < Chll1+11 L2(2), f E L 2(gQ), 

to see that 

(5.30) ||(Th - T)[(a+HE(ue))n_ f(Ue)n+?I]H|| 

< Chh1(a+ Hj(ue))n _ f(Ue)n+IhL2(2) 

< Ch { + Iftnl 1 [HE(Ue)] t(T)IL 2(s2 dT} 

? Ch { 1 + Ft [HE(ue)] t(T) IL2(tn,tn,;L2(Q))} 
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Estimates (5.28) and (5.30) allow us to replace (5.12) by 

(5.31) Max I|H,(ua) - He(Uhn) |F 
n 

M 

+ - (H ) He(U ), (Ue)n - Uh )L2(o) At 
n=O 

? C{h2( 1l [He( Ue)1 t L2(D) + i ) + - U |L(D) 

?C(h2+ (et) 2) 

where we have used (2.4ii) and (4.48). Compare (3.19) and (5.31) to obtain (5.25), 
and also use (5.15) to obtain (5.26) with - =Oh2 and \t < ch2. 

Next, we will derive a new estimate for term (IV)n+I in (5.6) in order to take 
advantage of (5.27). By (4.28) and (5.16), 

(5.32) j(IV)jn+l II1WeY,n1IH1(2) He(Ue)n+l - He(U 1 )IF 
2 

1 2 f/t (T- 
tn )Ut(T) + Tf(u-)(T) - 1U(T) 

2~~~~~~~~~~ + 2 jjHe(U )n - HeU n+)|lFh+ Ch2. 

By the above 

(5.33) II JWeHii'() ? i (fn? (T - tn)(IIUt(T)IIHi(&2)) dT) 

C . (||Ut|1L 2( tn,tn+I;HI(U2)))- 

Use (5.32) and (5.33) to replace (5.31) by 

(5.34) IH()n - H,(UIr)II2 (-3) Max ||HJfu 1) H h ) |Fh 

M 

+ 81 2 (He(U ) - He(Un), (Ue) - U)L2() At 
n=O 

< C{h2( l[He(ue)1t L2(D) + I) + h2 + (At)2} 

?C(h2 +(At)2), 

where we have used (4.48) and (5.27). Compare (3. 1Oii) and (5.34) to establish (5.25) 
with 0 < E < - h2 and At < ch; (5.26) follows as above from (3.1Oi). 

Remark 5.4. The rates (5.25)-(5.26) for 0 < - < -0h2 and A/t < ch appear to be in 
good agreement with numerical experience for the scheme (5.1) [41]. 

Remark 5.5. If (**) is true and we use the initial datum Uho = Ehuo, then, under 
the hypotheses of Theorem 5.3, 

(5.35) IIu - UhIIL-(o,To;L2(Q)) < CA 

The same estimate also holds with the choice dictated by (5. lii). 
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Remark 5.6. If we assume (5.27) and the hypotheses of Theorem 5.2, then 

(5.36) IIu - Uh,sIIL?(o,To;L2(0)) ? C[log(l/h)] /" , 

where d = 0 if dim(Q) = 1, d = 2 if dim(Q) = 2 or 3, 0 < E< oh2, and At < ch, 
and Uh,s is the step-function with value Uhn on tn s t s tn+ I 

6. Conclusions. The Stefan problem (1.1) is similar to a problem discussed in 
Wheeler's paper [40]. Wheeler considers the problem (1.2), instead of the trans- 
formed version (1. 1), and assigns the boundary data 

(6.1i) 0 = b(x, t) on aS21 x(0, To] 

ao t ona X 0 (6. 1ii) k a ?=q(,,) oa2x(oTo 

where ag is the disjoint union of U21 and a&22; our notation is as in Section 1. 
Provided b and q are C1 functions of their arguments and that q is linear in 0, the 
error analysis of this paper can be extended with minor modifications to treat 
(1.2)-(6.1) with the initial temperature 

(6.2i) 0(.,O) = 00( ) E H2(o2), 

(6.2ii) a(00) + s(0O) E L`0(S). 

Wheeler computes the integrals over S2 exactly in the nonlinear algebraic equations 
corresponding to (5.1). He then uses a constrained Newtonian iteration scheme to 
approximate the solution of the algebraic problems. The scheme was found to 
converge decently with - = 0 but setting - > 0 accelerated the convergence. 

The error analysis of the scheme (5.1) is of interest chiefly in a neighborhood of 
the phase transition region {(x, t): u(x, t) 0 O}. Away from the front (I.li) becomes 
the heat equation, u(x, t) is smooth [23], and one would expect an optimal-order 
O(h2 + A/t) local L2 convergence rate. This suggests that for the - = 0 scheme a 
coarse triangulation with mesh size hc proportional to hf be used away from the 

front, where hf is the fine mesh spacing employed near the phase transition. The time 
step size may be chosen as in Theorem 5.2 to maintain an overall 0( hf ) convergence 
rate. 
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